Blogs

Home / Blogs / Top 10 Data-Mining-Techniken

Inhaltsverzeichnis
Die automatisierte, Kein Code Datenstapel

Erfahren Sie, wie Astera Data Stack kann die Datenverwaltung Ihres Unternehmens vereinfachen und rationalisieren.

    Top 10 Data-Mining-Techniken

    Ammar Ali

    Assoziierter Marketing Manager

    August 5th, 2024

    Data Mining wird in zahlreichen Geschäftsbereichen eingesetzt, darunter Betrieb, Finanzen, Vertrieb und Marketing, Lieferkette und mehr. Wenn es richtig gemacht wird, bietet es eine Fülle von Informationen, die Ihnen einen Wettbewerbsvorteil verschaffen, indem es Ihnen hilft, bessere strategische Entscheidungen zu treffen.

    Was ist Data Mining und die Bedeutung von Data Mining

    Data Mining ist eine Technik, mit der Daten verarbeitet und Muster in großen Datensätzen untersucht werden, um praktische und datengesteuerte Erkenntnisse zu gewinnen. Zu den wesentlichen Aspekten des Data Mining gehören Datenbereinigung, Datentransformation und Datenintegration.

    Data Mining für Geschäftsanalysen

    Beim Data Mining werden Trends und neue Informationen aus bekannten Daten extrapoliert, um Business Intelligence und Analysen aufzudecken. Es hilft Unternehmen, Probleme zu lösen, Risiken zu minimieren und über einen längeren Zeitraum neue Möglichkeiten zu erkunden.

    Wir haben die 10 wichtigsten Data-Mining-Techniken notiert, die Data Scientists nutzen, um relevante, umsetzbare Daten für die Entscheidungsfindung zu extrahieren.

    Top 10 Data-Mining-Techniken

    1) Musterverfolgung

    Die Musterverfolgung ist eine der grundlegenden Data-Mining-Techniken. Dabei geht es darum, Trends in Datensätzen zu erkennen und zu überwachen, um intelligente Analysen zu Geschäftsergebnissen durchzuführen. Für ein Unternehmen kann sich dieser Prozess auf alles beziehen, von der Identifizierung der leistungsstärksten Bevölkerungsgruppen bis hin zum Verständnis saisonaler Schwankungen im Kaufverhalten des Kunden.

    Beispielsweise kann das Muster der Verkaufsdaten zeigen, dass ein bestimmtes Produkt bei bestimmten demografischen Gruppen beliebter ist, oder dass das Gesamtverkaufsvolumen nach der Weihnachtszeit zurückgegangen ist. Das Unternehmen kann diese Informationen dann verwenden, um bestimmte Märkte anzusprechen und die Lieferkette zu optimieren.

    2) Verein

    Wie bei der Musterverfolgung beinhaltet die Assoziationstechnik das Suchen nach bestimmten Vorkommen mit verbundenen Attributen. Die Idee ist, abhängig von bestimmten Attributen oder Ereignissen nach verknüpften Variablen zu suchen. Assoziationsregeln können besonders nützlich sein, um das Verbraucherverhalten zu untersuchen.

    Beispielsweise könnte ein Online-Shop erfahren, dass Kunden, die ein bestimmtes Produkt kaufen, wahrscheinlich einen ergänzenden Artikel kaufen werden. Anhand dieser Erkenntnisse können sie bessere Empfehlungen zur Maximierung der Verkaufserlöse abgeben. Diese Technik kann auch im Katalogdesign, Produktclustering, Layoutdesign usw. verwendet werden.

    Data-Mining-Techniken

    3) Klassifizierung

    Es ist eine nützliche Data-Mining-Technik, die verwendet wird, um relevante Daten abzuleiten und Metadaten basierend auf einem definierten Attribut, zum Beispiel der Art der Datenquellen, Data-Mining-Funktionen und mehr. Im Grunde handelt es sich dabei um den Prozess der Aufteilung großer Datenmengen in Zielkategorien. Diese Kategorisierung wird auch durch das Datengerüst bestimmt, zum Beispiel relationale Datenbank, objektorientierte Datenbank usw. Sie fällt in den Bereich der Datenaufbereitung.

    Angenommen, Ihr Unternehmen möchte die Umsatzänderung für Kunden mit einer Treuemitgliedschaft prognostizieren. Sie können eine Kategorie erstellen, die die demografischen Daten von Kunden mit einer Treuemitgliedschaft enthält, um ein binäres Klassifizierungsmodell zu entwerfen, um eine Erhöhung oder Verringerung der Ausgaben vorherzusagen.

    4) Ausreißererkennung

    Es gibt Fälle, in denen das Datenmuster kein klares Verständnis der Daten bietet. In solchen Situationen ist die Ausreißererkennungstechnik praktisch. Es geht darum, Anomalien oder „Ausreißer“ in Ihrem Datensatz zu identifizieren, um bestimmte Ursachen zu verstehen oder genauere Vorhersagen abzuleiten.

    Hier ist ein Beispiel. Angenommen, Ihr Umsatz bewegt sich immer zwischen 7,000 und 10,000 US-Dollar pro Woche. Aber in einer Woche übersteigen die Verkaufserlöse 40,000 US-Dollar, ohne dass offensichtliche saisonale Faktoren eine Rolle spielen. Sie sollten den Grund für den Umsatzanstieg verstehen, damit Sie ihn replizieren und Ihren Kundenstamm besser verstehen können.

    5) Clustering

    Wie die Klassifizierung ist auch das Clustering eine Data-Mining-Technik, bei der Daten basierend auf Ähnlichkeiten gruppiert werden. Es hilft bei der Wissensentdeckung, der Erkennung von Anomalien und dem Gewinnen von Einblicken in die interne Struktur der Daten.

    Beispielsweise können Sie Zielgruppen aus verschiedenen Regionen basierend auf ihrer Altersgruppe, ihrem Geschlecht und ihrem verfügbaren Einkommen in Paketen gruppieren, sodass Sie Ihre Marketingkampagne so anpassen können, dass Ihre Reichweite maximiert wird.

    Die Ergebnisse der Cluster-Datenanalyse werden in der Regel mithilfe von Diagrammen angezeigt, um Benutzern zu helfen, die Datenverteilung zu visualisieren und Trends in ihren Datensätzen zu erkennen.

    6) Sequentielle Muster

    Wie der Name schon sagt, handelt es sich hierbei um eine Mining-Technik, die sich darauf konzentriert, Muster oder eine Reihe von Ereignissen zu entdecken, die in einer Abfolge stattfinden. Es wird häufig im Transaktions-Data-Mining verwendet, hat aber zahlreiche Anwendungen. Beispielsweise kann es Unternehmen dabei helfen, Kunden relevante Artikel zu empfehlen, um den Umsatz zu maximieren.

    Ein Beispiel wäre ein sequentieller Trend, der in einem Elektronikgeschäft identifiziert wurde, wo Kunden, die ein iPhone kaufen, wahrscheinlich innerhalb von sechs Monaten ein MacBook kaufen werden. Der Einzelhändler kann diese Informationen nutzen, um gezielte Marketingkampagnen zu erstellen, um iPhone-Käufer zu verkaufen. Zum Beispiel Bundle-Angebot von Apple-Produkten zur Umsatzmaximierung.

    7) Entscheidungsbaum

    Ein Entscheidungsbaum ist eine Data-Mining-Technik im maschinellen Lernen (ML), die sich auf die Modellierung von Eingabe- und Ausgabebeziehungen mithilfe von Wenn/Dann-Regeln konzentriert. Mit diesem Ansatz können Sie lernen, wie die Dateneingaben die Ausgaben beeinflussen. Die Bäume sind typischerweise in einer von oben nach unten verlaufenden, flussdiagrammartigen Struktur gestaltet.

    Beispielsweise:

    • Wenn der Warenkorbwert < 500 $ ist, dann ist es ein Stammkunde (kein Rabatt)
    • Wenn der Warenkorbwert > 500 $ UND < 2,000 $ ist, dann ist es ein Premium-Kunde (10 Prozent Rabatt)
    • Wenn der Warenkorbwert > 2,000 $ ist, dann ist es ein exklusiver Kunde (20 Prozent Rabatt und 10 % des Transaktionswerts in Treuepunkte umgewandelt)

    Dieser Entscheidungsbaum ist ein vereinfachtes Beispiel. Ein Predictive-Analytics-Modell mit mehreren Entscheidungsbaummodellen erleichtert komplexere Datenanalysen.

    Entscheidungsbäume werden hauptsächlich für Klassifikations- und Regressionsmodelle verwendet.

    8) Regressionsanalyse

    Es ist eine der beliebtesten Data-Mining-Techniken beim maschinellen Lernen, die die lineare Beziehung zwischen Variablen nutzt. Es hilft Ihnen, den zukünftigen Wert von Variablen vorherzusagen. Die Technik hat zahlreiche Anwendungen in der Finanzprognose, Ressourcenplanung, strategischen Entscheidungsfindung und mehr.

    Beispielsweise können Sie die Regressionsanalyse verwenden, um die Korrelation zwischen Bildung, Einkommen und Ausgabegewohnheiten zu verstehen. Die Komplexität der Vorhersage nimmt zu, wenn Sie weitere Variablen hinzufügen. Zu den gängigen Techniken gehören standardmäßige multiple, schrittweise und hierarchische Regression.

    9) Langzeitgedächtnisverarbeitung

    Die Verarbeitung des Langzeitgedächtnisses ist eine Data-Mining-Technik des maschinellen Lernens, mit der Daten über lange Zeiträume analysiert werden. Es ermöglicht Ihnen, zeitbasierte Datenmuster, wie z. B. Klimadaten, effektiver zu identifizieren. Es soll Daten im Systemspeicher skalieren und zusätzliche Informationen in der Analyse nutzen.

    Sie können beispielsweise ein Vorhersagemodell entwerfen, um betrügerische Transaktionen zu identifizieren, indem Sie Wahrscheinlichkeiten zuweisen. Sie können dieses Modell für bestehende Transaktionen verwenden und das Modell nach einiger Zeit mit den Daten aktualisieren, die aus neuen Transaktionen stammen, was zu einer verbesserten Entscheidungsfindung führt.

    10) Neuronale Netze

    Ein neuronales Netzwerk ist auch eine der beliebtesten Data-Mining-Techniken in maschinellen Lernmodellen, die mit künstlicher Intelligenz (KI) verwendet werden. Wie Neuronen im Gehirn versucht es, Zusammenhänge in Daten zu erkennen. Neuronale Netze haben verschiedene Schichten, die zusammenarbeiten, um Datenanalyseergebnisse mit großer Genauigkeit zu erzeugen.

    Diese Modelle suchen nach Mustern in einer großen Datenmenge. Obwohl sie daher sehr komplex sein können, können die generierten Ergebnisse Organisationen äußerst wertvolle Erkenntnisse liefern.

    Data-Mining-Techniken

    Data-Mining vs. Maschinelles Lernen: Der entscheidende Unterschied

    Maschinelles Lernen ist der Prozess des Trainings von Systemen, um zu lernen und Ergebnisse durch Erfahrung genauer vorherzusagen. In ML sind die Algorithmen und Modelle so konzipiert, dass sie sich unabhängig und durch Iterationen an neue Daten anpassen – ohne menschliches Eingreifen.

    Data Mining und maschinelles Lernen fallen unter den Begriff Data Science, unterscheiden sich jedoch erheblich. Data Mining wird verwendet, um Ergebnisse auf der Grundlage historischer Daten zu bestimmen, während ML gesammelte Daten und Erfahrungen verwendet, um ein System intelligenter zu machen. Während ersteres auf Big Data setzt, arbeitet letzteres mit Algorithmen.

    Was sind die besten Data-Mining-Techniken für maschinelles Lernen?

    Es hängt davon ab, ob. Keine Technik ist für jeden Anwendungsfall der Data-Mining-Analyse geeignet. Sie müssen verschiedene Data-Mining-Anwendungen ausprobieren und Trial-and-Error durchlaufen, um relevante, datengesteuerte Erkenntnisse für Ihr Unternehmen zu gewinnen.

    Data-Mining-Techniken

    Erste Schritte mit Data Mining

    Ihre Organisation kann mit Data Mining beginnen, indem sie die richtigen Datenverwaltungstools nutzt. Es ist von entscheidender Bedeutung, über ein System zu verfügen, das einen nahtlosen Datenfluss in Analysesysteme ermöglicht, um erweiterte Analysen zu ermöglichen. Modernes Data Warehousing ist besonders nützlich, da es als zentrales Repository für bereinigte und transformierte Daten dient, die für Data-Mining-Anwendungen bereit sind.

    Sie können das beste Data-Mining-Tool haben, jedoch ohne genaue und strukturierte Datensätze erhalten Sie nicht die optimalen Ergebnisse. Das liegt daran, dass die Daten genau, vollständig und konsistent sein müssen, damit die Software zuverlässige und vertrauenswürdige Erkenntnisse liefert. Daher müssen Rohdaten aus unterschiedlichen Quellen bereinigt und aufbereitet werden, bevor Data-Mining-Techniken auf sie angewendet werden können.

    Darüber hinaus kann der Prozess verschiedene Aspekte der Datenextraktion, Datenmigration, Datenintegration und mehr umfassen. Diese Schritte sind zwingend erforderlich, um die Datenqualität sicherzustellen. Ohne Bereinigung und Aufbereitung der Daten können Unternehmen den Analyseergebnissen und den aus den Erkenntnissen gezogenen Schlussfolgerungen nicht vertrauen.

    Da die meisten Organisationsdaten in einem unstrukturierten Format vorliegen, besteht der erste Schritt darin, Daten zu extrahieren. Es beinhaltet die Verwendung einer zuverlässigen Datenextraktionslösung, aus der Daten abgerufen werden können PDF-Geschäftsdokumente und Systeme und wandeln sie in ein maschinenlesbares Format um.

    Als umfassender Anbieter von Datenmanagementlösungen Astera Software versteht die Feinheiten der Extraktion und Aufbereitung von Daten zur Ableitung von Geschäftswert. Versuchen Astera ReportMiner Sehen Sie sich noch heute an, wie es Ihnen dabei helfen kann, Daten nahtlos zu extrahieren und Ihren Data-Mining-Prozess zu optimieren.

    Autoren:

    • Ammar Ali
    Sie können auch mögen
    Ihr umfassender Leitfaden zur Hypothekendokumentenverarbeitung mit KI
    So nutzen Sie KI zum Extrahieren von Daten aus PDF: Vorteile und Anwendungsfälle
    Modellverhalten: Warum Ihr Unternehmen die LLM-Datenextraktion benötigt
    In Anbetracht Astera Für Ihre Datenverwaltungsanforderungen?

    Stellen Sie eine codefreie Konnektivität mit Ihren Unternehmensanwendungen, Datenbanken und Cloud-Anwendungen her, um alle Ihre Daten zu integrieren.

    Lassen Sie uns jetzt eine Verbindung herstellen!
    Lass uns verbinden