Webinaire à venir

Rejoignez-nous pour un webinaire GRATUIT sur Traitement automatisé des fichiers EDI de santé avec Astera

27 juin 2024 — 11 h HP / 1 h CT / 2 h HE

Blogs

Accueil / Blogs / Qu'est-ce que le schéma en étoile ? Avantages et inconvénients

Table des matières
L'automatisé, Pas de code Pile de données

Apprener comment Astera Data Stack peut simplifier et rationaliser la gestion des données de votre entreprise.

Qu'est-ce qu'un schéma en étoile ? Avantages et inconvénients

Junaïd Baig

Spécialiste du référencement

25 mars 2024

Qu'est-ce qu'un schéma en étoile ?

Introduit en 1996 par Ralph Kimball, un schéma en étoile est une technique de modélisation de données multidimensionnelle. Il s'agit du type de schéma le plus simple utilisé par les entreprises dans entreposage de données.

D'après son nom, un schéma en étoile ressemble à une étoile lorsqu'il est visualisé. Il comporte une table de faits au milieu et de nombreuses tables de dimensions qui y sont attachées. Cette structure simple et dénormalisée la rend très efficace pour interroger des données.

schéma en étoile simple

Schéma en étoile avec tables de faits et de dimensions

Structure du schéma en étoile : tableaux de faits et de dimensions

Tableaux de faits

Les tables de faits, ou entités de faits, servent de pièce maîtresse du schéma en étoile. Une table de faits typique contient des données quantitatives ou des métriques qui représentent des événements commerciaux, des transactions ou des mesures. Ces faits sont généralement des valeurs numériques, telles que le chiffre d'affaires, le bénéfice ou les unités vendues.

Nous pouvons voir un exemple de tableau de faits ci-dessous. Il contient des faits mesurables, tels que le prix d'une unité vendue et la taxe de vente.

Date Emplacement Type de produit Quantité Prix ​​unitaire Montant des ventes Achat La taxe de vente
8/4/2023 CA Nylon 5 100 500 30 7.75%
8/4/2023 CA Polyester 7 250 1750 50 7.75%
8/4/2023 PA Nylon 6 100 600 65 6.00%

Tables de dimensions

Les tables de dimension sont les tables auxiliaires qui fournissent des attributs contextuels et descriptifs pour les données de la table de faits. Ils aident à répondre à des questions telles que « qui », « quoi », « quand », « où » et « comment » liées aux événements professionnels. Les tableaux de dimensions contiennent des données catégorielles, telles que les noms des clients, les catégories de produits, les périodes et les emplacements géographiques.

Exemple : les deux tableaux de dimensions ci-dessous fournissent des détails sur les informations sur le produit dans le tableau de faits ci-dessus.

Date Dimension
Date clé Date Jour
10201 8/4/2023 Samedi
10202 8/4/2023 Samedi

Tableau des dimensions pour la date

Dimension magasin
Clé de magasin Nom de l'agence Ville Région
151 AngAngie'sparel Los Angeles Californie
152 AngAngie'sparel Pittsburgh Pennsylvanie

Tableau des dimensions pour le magasin

Avantages de l'utilisation des schémas en étoile

  1. Interrogation simplifiée : Les schémas en étoile sont faciles à comprendre et à mettre en œuvre. Leur structure dénormalisée réduit le nombre de jointures nécessaires pour récupérer les données. Cela simplifie et conduit à une agrégation et à des rapports de données plus rapides.

  2. Performances plus rapides : La complexité réduite des jointures et l'indexation efficace des tables de faits et de dimensions améliorent la récupération des données. Ceci est particulièrement important pour les décideurs qui ont besoin d'un accès rapide aux informations.
  3. Analyse intuitive : Les schémas en étoile permettent une analyse de données intuitive et simple. Les utilisateurs peuvent facilement comprendre les relations et les hiérarchies entre les dimensions.
  4. Prise en charge robuste : Les schémas en étoile prennent en charge les structures OLAP telles que les cubes de données – des tableaux multidimensionnels utilisés pour améliorer l'analyse des données.

Inconvénients de l'utilisation de schémas en étoile

  1. Manque d'intégrité : La dénormalisation peut entraîner une redondance des données. Les attributs dimensionnels sont souvent répétés dans plusieurs enregistrements d'une table de dimensions, ce qui peut entraîner des problèmes de qualité des données. Étant donné que les données sont dupliquées lors de la dénormalisation, des modifications fréquentes peuvent également entraîner l'affichage d'informations obsolètes dans certaines tables.
  2. Coûts accrus : L'ajout de données redondantes augmente les coûts de calcul et de stockage. Cela peut être particulièrement troublant lors de la manipulation de grands ensembles de données.
  3. Flexibilité limitée : Les schémas en étoile sont relativement moins robustes que les structures normalisées car ils sont construits pour des cas d'utilisation spécifiques. D'autres approches pourraient être plus efficaces pour les requêtes complexes impliquant plusieurs jointures.
  4. Difficultés d'entretien : À mesure que les données évoluent au fil du temps, la maintenance d’un schéma en étoile peut devenir difficile. Les mises à jour des attributs de dimension peuvent nécessiter des modifications à plusieurs endroits.

Quand utiliser le schéma en étoile

Cette technique de modélisation dimensionnelle est la meilleure option lorsque :

  • Les utilisateurs ont une compréhension claire des données requises. Par exemple : le nombre de produits vendus par état.
  • Les données sont structurées et quantitatives avec quelques attributs catégoriels.
  • Ils veulent les données rapidement et facilement, sans créer de multiples jointures. La performance des requêtes est la priorité absolue.
  • La redondance des données ne sera pas un problème.

Les analystes et les utilisateurs professionnels qui souhaitent une plus grande rigidité des données peuvent opter pour une approche plus normalisée. Le schéma en flocon de neige est une extension du schéma en étoile : il comprend un modèle en étoile normal avec des tableaux de sous-dimensions supplémentaires.

Les schémas Snowflake utilisent une approche plus normalisée adaptée à moins de redondance et à des requêtes plus complexes.

En savoir plus sur les avantages et les inconvénients de Schéma en étoile et schéma en flocon de neige et quand les utiliser.

Conclusion

Les schémas en étoile ne sont qu'une approche pour modélisation dimensionnelle. D'autres approches, telles que snowflake et 3NF, sont également largement utilisées dans la construction de data marts et d'entrepôts de données. La tâche importante pour les équipes de données est de trouver la meilleure approche en fonction de leur cas d'utilisation et de leurs ressources.

La sélection de la bonne technique de modélisation est essentielle pour automatiser l’entreposage de données et les initiatives BI. Consultez notre guide de boîte à outils sur la création de modèles de données et de pipelines efficaces pour l'automatisation des entrepôts de données et l'amélioration de vos rapports et analyses.

Tu pourrais aussi aimer
Une introduction à la gouvernance active des données
Un guide sur la gouvernance automatisée des données : importance et avantages
Le manuel de gouvernance des données
Considérant Astera Pour vos besoins en gestion de données ?

Établissez une connectivité sans code avec vos applications d'entreprise, vos bases de données et vos applications cloud pour intégrer toutes vos données.

Connectons-nous maintenant !
connectons-nous