Blogs

Home / Blogs / Extracting Insights with Unstructured Data Management

Table of Content
The Automated, No-Code Data Stack

Learn how Astera Data Stack can simplify and streamline your enterprise’s data management.

    Extracting Insights with Unstructured Data Management

    September 3rd, 2024

    80% of data in the world today is unstructured, which continues to grow rapidly. To illustrate further, structured enterprise databases can consist of up to tens of terabytes of data (including backups and duplicated records). But when we talk about unstructured datasets, such as those generated from IoT devices, the size can be in exabytes (millions of terabytes). This sheer volume and complexity are factors that make unstructured data management (UDM) a difficult task.

    Unstructured data management

    What is Unstructured Data?

    Unstructured data can be defined as data in any form that does not have a pre-defined model or format. This type of data is generated from various sources, including audio files, videos, images, social media posts, and text files.

    Most organizations have robust strategies for managing and analyzing their structured data. But, the real value lies in managing this new wave of semi-structured data or unstructured content. This blog post presents the fundamentals of unstructured data management solutions for IT teams and business owners.

    Opportunities Available

    Leveraging and utilizing big data volumes can open many opportunities for organizations. Businesses can view information across new dimensions by analyzing unstructured data, improving decision-making. Here are two key areas where managing unstructured data can be beneficial:

    1. Business Intelligence: A good approach to business intelligence is using internal and external data for data analysis. It’s easy to access structured data from an internal database, but using information entrapped in third-party APIs and open-source datasets available on the web is challenging. This is because users have to process this data before feeding it into a BI system. However, using unstructured data can help you evaluate information from new angles. For example, you can identify bottlenecks in your online store’s customer buyer journey by studying customer interactions using a tool like Hotjar. You can use this information to improve your website’s overall design and make call-to-actions more effective, ultimately positively impacting the conversion rate.
    2. Product Development: Every organization wants to learn how to improve their product development process. Capturing and analyzing unstructured data can help with this. For example, if you know what your customers talk about on social media, you can learn more about their interests and behavior patterns. Then, your product development team can use all this information to launch new products and services with high demand, eventually leading to increased sales.

    See How Much You Can Save with Automated Data Extraction

    Discover the hidden costs of manual data extraction and explore how Astera ReportMiner can significantly reduce these expenses.

    Calculate your savings

    Unstructured Data Management vs. Structured Data Management

    Structured data management is simple and convenient, particularly because this type of data is highly organized and well-formatted. Relational database management systems and schema generators are just two examples of the hundreds of available tools for storing, accessing, and managing structured data.

    On the other hand, unstructured data management (UDM) is not as simple because of the significantly higher volume of data and lack of a consistent format. Most unstructured data is machine-generated (e.g., through an IoT device), lacking proper formatting and consistency. Moreover, the availability of fewer tools and techniques also makes unstructured data management a challenge. However, investing in managing unstructured data storage is recommended despite its complications. In the long term, an unstructured data management solution can provide you with a barrage of meaningful insights.

    One of the major differences between structured and unstructured data is the type of information they provide. You are limited to just descriptive or diagnostic data with a structured database. But with unstructured data, you can apply artificial intelligence and machine learning algorithms to obtain predictive and prescriptive data.

    Successful organizations around the globe are now making use of unstructured data to unlock insights that are otherwise hidden using traditional data extraction techniques.

    Key Requirements

    Managing unstructured data can be difficult, but using the right techniques and tools can simplify the process. Given below are two key requirements that you need to fulfill for indexing unstructured data:

    1. Store everything: The first key requirement to manage data is to start storing all data you generate. With the cost of storing data becoming cheaper, retaining data in the long term can cost you as little as a few dollars per terabyte annually on cloud-based storage solutions.
    2. Separate data from storage: Now that you are storing all this information, the next step is to use this data to gain insights. Using on-premise tools, such as ReportMiner, can help you extract unstructured data from various sources and integrate it with your structured data to have all information available for your data analytics tools.

    Unstructured Data Management Example

    To illustrate how these requirements can help with unstructured data management, let us consider an example. Assume that XYZ Corporation collects customer behavior data from social media and website heatmaps. This is unstructured data that is stored in PDF and Excel files.

    Examples of unstructured data from a log file include:

    P-R-34341-1-9,P-R-33341-1-15,P-R-33110-1-29,P-R-31345-1-693,P-R-29076-1-6,P-R-28767-1-8,P-R-28540-2-8,P-R-28312-1-10,P-R-28069-1-27,P-R-28032-1-9,P-R-26562-1-12,P-R-26527-5-20,P-R-26164-1-11,P-R-25785-1-30,P-R-25095-9-70,P-R-23504-1-15,P-R-19719-5-41203

    Once they generate this information from different websites, they can extract it using ReportMiner and store it in a local database alongside other customer information. They can integrate this data with other customer data stored in their CRM solution and then feed it to a business intelligence tool to learn important details about customer needs. Using this information, the business can plan and strategize its marketing and sales campaign to boost revenue.

    Cut Down Data Extraction Time From Hours To Minutes

    Transform raw data into actionable insights faster than ever before. Astera ReportMiner automates the process, saving you time and resources.

    Try It Free for 14 Days

    Managing Unstructured Data with ReportMiner

    Unstructured data management solutions can help businesses uncover the path to effective decision-making through better insights and improved analytics. Utilizing all the available data can help you gain a broader perspective of your business, customers, and products.

     

    ReportMiner is a modern on-premise unstructured data extraction software designed to help extract structured and unstructured data. The software can help you simplify the otherwise complex process of UDM by offering visual UI and automation capabilities.

    Authors:

    • Tehreem Naeem
    You MAY ALSO LIKE
    Your Complete Guide to Mortgage Document Processing with AI
    How to Use AI to Extract Data from PDF: Benefits & Use Cases
    Model Behavior: Why Your Business Needs LLM Data Extraction
    Considering Astera For Your Data Management Needs?

    Establish code-free connectivity with your enterprise applications, databases, and cloud applications to integrate all your data.

    Let’s Connect Now!
    lets-connect